

Welcome to Python State Machine’s documentation!

Contents:

	Python State Machine
	Getting started

	Installation
	Stable release

	From sources

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	Credits

	History
	0.4.2 (2017-07-10)

	0.3.0 (2017-03-22)

	0.2.0 (2017-03-22)

	0.1.0 (2017-03-21)

Indices and tables

	Index

	Module Index

	Search Page

Python State Machine

[image: https://img.shields.io/pypi/v/python-statemachine.svg]
 [https://pypi.python.org/pypi/python-statemachine][image: Build status]
 [https://travis-ci.org/fgmacedo/python-statemachine][image: Coverage report]
 [https://codecov.io/gh/fgmacedo/python-statemachine][image: Documentation Status]
 [https://python-statemachine.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/fgmacedo/python-statemachine/]Python finite-state machines [https://en.wikipedia.org/wiki/Finite-state_machine] made easy.

	Free software: MIT license

	Documentation: https://python-statemachine.readthedocs.io.

Getting started

To install Python State Machine, run this command in your terminal:

$ pip install python-statemachine

Define your state machine:

from statemachine import StateMachine, State

class TrafficLightMachine(StateMachine):
 green = State('Green', initial=True)
 yellow = State('Yellow')
 red = State('Red')

 slowdown = green.to(yellow)
 stop = yellow.to(red)
 go = red.to(green)

You can now create an instance:

>>> traffic_light = TrafficLightMachine()

And inspect about the current state:

>>> traffic_light.current_state
State('Green', identifier='green', value='green', initial=True)
>>> traffic_light.current_state == TrafficLightMachine.green == traffic_light.green
True

For each state, there’s a dinamically created property in the form is_<state.identifier>, that
returns True if the current status matches the query:

>>> traffic_light.is_green
True
>>> traffic_light.is_yellow
False
>>> traffic_light.is_red
False

Query about metadata:

>>> [s.identifier for s in m.states]
['green', 'red', 'yellow']
>>> [t.identifier for t in m.transitions]
['go', 'slowdown', 'stop']

Call a transition:

>>> traffic_light.slowdown()

And check for the current status:

>>> traffic_light.current_state
State('Yellow', identifier='yellow', value='yellow', initial=False)
>>> traffic_light.is_yellow
True

You can’t run a transition from an invalid state:

>>> traffic_light.is_yellow
True
>>> traffic_light.slowdown()
Traceback (most recent call last):
...
LookupError: Can't slowdown when in Yellow.

You can also trigger events in an alternative way, calling the run(<transition.identificer>) method:

>>> traffic_light.is_yellow
True
>>> traffic_light.run('stop')
>>> traffic_light.is_red
True

A state machine can be instantiated with an initial value:

>>> machine = TrafficLightMachine(start_value='red')
>>> traffic_light.is_red
True

Models

If you need to persist the current state on another object, or you’re using the
state machine to control the flow of another object, you can pass this object
to the StateMachine constructor:

>>> class MyModel(object):
... def __init__(self, state):
... self.state = state
...
>>> obj = MyModel(state='red')
>>> traffic_light = TrafficLightMachine(obj)
>>> traffic_light.is_red
True
>>> obj.state
'red'
>>> obj.state = 'green'
>>> traffic_light.is_green
True
>>> traffic_light.slowdown()
>>> obj.state
'yellow'
>>> traffic_light.is_yellow
True

Events

Docs needed.

Mixins

Docs needed.

Installation

Stable release

To install Python State Machine, run this command in your terminal:

$ pip install python-statemachine

This is the preferred method to install Python State Machine, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Python State Machine can be downloaded from the Github repo [https://github.com/fgmacedo/python-statemachine].

You can either clone the public repository:

$ git clone git://github.com/fgmacedo/python-statemachine

Or download the tarball [https://github.com/fgmacedo/python-statemachine/tarball/master]:

$ curl -OL https://github.com/fgmacedo/python-statemachine/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Python State Machine in a project:

import statemachine

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/fgmacedo/python-statemachine/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Python State Machine could always use more documentation, whether as part of the
official Python State Machine docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/fgmacedo/python-statemachine/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up python-statemachine for local development.

	Fork the python-statemachine repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/python-statemachine.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv python-statemachine
$ cd python-statemachine/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 statemachine tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.3, 3.4 and 3.5. Check
https://travis-ci.org/fgmacedo/python-statemachine/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_statemachine

Credits

Development Lead

	Fernando Macedo <fgmacedo@gmail.com>

Contributors

None yet. Why not be the first?

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

History

0.4.2 (2017-07-10)

	Python 3.6 support.

	Drop official support for Python 3.3.

	Transition can be used as decorator for on_execute callback definition.

	Transition can point to multiple destination states.

0.3.0 (2017-03-22)

	README getting started section.

	Tests to state machine without model.

0.2.0 (2017-03-22)

	State can hold a value that will be assigned to the model as the state value.

	Travis-CI integration.

	RTD integration.

0.1.0 (2017-03-21)

	First release on PyPI.

Index

 _static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to Python State Machine's documentation!

 		Python State Machine

 		Getting started

 		Models

 		Events

 		Mixins

 		Installation

 		Stable release

 		From sources

 		Usage

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

 		Credits

 		History

 		0.4.2 (2017-07-10)

 		0.3.0 (2017-03-22)

 		0.2.0 (2017-03-22)

 		0.1.0 (2017-03-21)

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

